Rayleigh-Taylor (RT)/ Richtmyer-Meshkov (RM) Instability: Background

- Rayleigh-Taylor instability (RT) occurs when a density gradient is accelerated by a pressure gradient such that $\nabla \rho \cdot \nabla p > 0$.
- When a heavy fluid rests above a light fluid under the influence of gravity, the density interface is unstable to infinitesimal perturbations.

KH instability occurs whenever two fluids of different densities (same velocity) are brought into contact with one another.

The resulting flow evolves in three stages:
1. Exponential growth of infinitesimal perturbations
2. Nonlinear saturation of perturbations
3. Transition to turbulence and self-similar growth

Governing parameter for the flow is a non-dimensional density difference known as the Atwood number, $A_t = (\rho_{heavier} - \rho_{lighter}) / \rho_{lighter}$. During self-similar growth, the half width h grows according to $h = A_t \, g \, t^2$ where g is the acceleration due to gravity, and t is time.

High Atwood Number He/Air Gas Channel, $(A_t \leq 0.75)$

- Air and air + Helium mixture are used as working fluids to create density difference.
- Air is used as top stream fluid and Helium is used as bottom stream fluid and both streams are separated by a splitter plate.
- Convective type system, opposed to conventional box type system.
- Different concentrations of Helium can be used in bottom stream to obtain A_t up to 0.75.
- Fans can pump air into the system up to 2m/s and different velocity ratios can be obtained by varying the fan opening.

Diagnostics

- Two types of diagnostics are used for measurements: Image analysis and Simultaneous 3 Wire and Cold Wire Anemometry (SWCA)

Image Analysis

- Channel is backlit using 5 fluorescent lights and light diffusing sheets are used to enhance the uniformity of the light intensity.
- Smoke is injected into one of the streams for visualization purposes.
- Calibration is performed in a triangular wedge to determine the fog concentration at which light intensity is proportional to volume fraction of the fog.
- Images are taken during the experiment and ensemble average of these images is taken as the basis for calculating mixing width and its growth rate.

- Two probes are used to measure density and velocity simultaneously at a particular point in the mixing region.
- Temperature is used as a marker for density.
- Cold wire is used to measure temperature (can be correlated to density) and a 3 wire probe is used to measure the velocities in all the three directions.
- 3 wire probe is calibrated at different velocities and volume fractions to obtain the velocities from experiments once density is evaluated from cold wire signal.

Image Analysis Results

- Vertical plane structures are characteristic of RT instability and span wise vertical structures are observed for KH instability.
- For the combined KHRT case, span wise vertical structures are observed closer to the splitter plate and these structures are stretched by buoyancy within those structures.
- Mixing width grows linearly for KH and grows quadratically for RTI. For the combined case, mixing region grows linearly at earlier times and became quadratic at later times.
- If the shear is high enough, the quadratic behavior may not be observed.
- From the mixing width data, growth rate constant α can be calculated from $h_t = \alpha \, t$ and its found out to vary between 0.037 - 0.094, whereas it is found out to be constant for RTI experiments.

S3WCA Results

- This technique provided instantaneous velocity and density data at a particular point in the mixing region.
- Different statistics including RMS values of velocities, densities and turbulent mass flux at a point.
- Measurement are made at different axial locations and across the streams, obtained velocity RMS profiles are shown on right side. ‘u’ is the streamwise velocity and ‘v’ is crossstream velocity.
- All the velocity profiles have shown maximum values at the center of the mixing region and the maximum value point shifts towards lower velocity stream direction with the introduction of shear.
- Closer to the splitter plate, KHRT3 has similar profile as KH1 showing that the mixing is mainly due to shear and v rms value is also 3 times larger than RT.
- Difference between KHRT2 and KH1 grows at larger distances away from splitter plate and distribution shows similarities with RT.
- v rms value is related to mixing growth rate constant α and the values obtained are in the same range from image analysis.
- 0 is the molecular mixing parameter, its value is equal to 1 when the fluids are fully mixed and equal to zero when they are segregated.
- Introduction of shear has shown slight increase in the molecular mixing between the streams.
- The increase in v can be attributed to span wise vortices, stretched by buoyancy. These stretched structures improve the surface areas between the fluids and improve the molecular mixing.

Progress and Future Work:

- Effect of shear on RT-T mixing studied using Image Analysis and Hot Wire Anemometry at low Atwood number of 0.04.
- 3 wire probe (Dantec 55P91) is used to measured 3 components of velocity and cold Wire Anemometry is used to measure density using temperature as a density marker.
- This technique allows to calculate vertical turbulent mass flux ($\tau = \nabla \cdot \chi_{\rho}$) using 250 images taken at the rate of 60 images per minute for the cases shown in table.

Hot Wire Anemometry

- Sample size for statistical analysis = 50000
- RMS fluctuations of streamwise and crossstream velocity fluctuations for different cases. Mixing growth rate constant α varies with time.
- Molecular mixing parameter 0 for different cases with and without shear $A_t = 0.04$

References: